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Abstract 

We show how the standard field theoretical language based on creation and annihilation operators may be used for a 

straightforward derivation of closed master equations describing the population dynamics of multivariate stochastic epidemic 

models. In order to do that, we introduce an SIR-inspired stochastic model for hepatitis C virus epidemic, from which we 

obtain the time evolution of the mean number of susceptible, infected, recovered and chronically infected individuals in a 

population whose total size is allowed to change. 
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In the pioneering work [1] it was shown that 

creation and annihilation operators (building blocks 

of the second quantization method and standard 

field theoretical language) are not limited to 

quantum systems and, in fact, may be introduced to 

the description of certain classical many-particle 

systems. Since then, this Fock space formalism (or 

field theoretical language) for classical systems was 

complemented by a path integral version and 

applied to the description of stochastic (birth-death) 

processes on lattices [2,3].  

 

In this letter we show how this standard field 

theoretical language based on creation and 

annihilation operators may be used for a 

straightforward derivation of closed master 

equations describing the population dynamics of 

multivariate stochastic epidemic models. Indeed, 

our main motivation comes from the fact that, as 

remarked in [4], for the kinds of model studied in 

population biology and epidemiology, this field 

theoretical description is notationally neater and 

more manageable than standard methods, in often 

replacing sets of equations with single equations 

with the same content. As an example of this, we 

may stress that a single hamiltonian function sums 

up the system dynamics compactly and may be 

easily written down from a verbal description of the 

transitions presented in our model.  

 

Hence, in what follows, we will illustrate the 

approach above mentioned by introducing an SIR-

inspired stochastic model for hepatitis C virus 

epidemic
1
, from which we obtain the time 

evolution of the mean number of susceptible, 

infected, recovered and chronically infected 

individuals in a population whose total size is 

allowed to change. The number of these individuals 

will be represented, respectively, by the following 

random variables: ( )tS , ( )tI , ( )tR and ( )tC .  

 

We will then start by considering a multivariate 

process 
0

{( ( ); ( ); ( ); ( ))}
t

t t t t



S I R C  with a joint 

probability function given by 

 

                                                           
1
 We will focus on the specific problem of hepatitis C virus 

epidemic motivated by the recent interest on epidemic models 
describing this disease, as may be observed in [5]. Note that 
one of the main differences between our model and the usual 
SIR epidemic model lies on the fact that, inspired by the 
observation that approximately 75-85% of people who become 
infected with hepatitis C virus develop chronic infection [6], we 
consider the infected state (or compartment) I as a kind of 
metastate from which the individuals evolve to a chronically 

infected state C (in 80%   of the cases) or a recovered state 

R.  
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As previously stated, our aim is to compute time-

dependent expectation values of the observables

( )tS , ( )tI , ( )tR and ( )tC , which may be 

defined in terms of the configuration probability 

according to 
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The probabilistic state of the system may be 

represented by the vector 
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  (2) 

with the normalization condition 
({ })

{ }

( ) 1.
i

i

n

n

p t   

At this point it is worth to note that the fact that the 

configurations are given entirely in terms of 

occupation numbers  
i

n calls indeed for a 

representation in terms of second-quantized 

bosonic operators which then lead us to introduce 

creation and annihilation operators for the 

susceptible, infected, recovered and chronically 

infected individuals, respectively, 
†

i
a  and 

i
a , 

{ , , , }i S I R C , satisfying the following 

commutation relations 

 
 

†

† †

,

, , 0,

i j ij

i j i j

a a

a a a a



 

  

  

  (3) 

where 
ij

  is the Kronecker delta ( 1
ij

   if i j  

and 0
ij

   if i j ) . 

The main idea is that 
†

S
a , 

†

I
a , 

†

R
a and 

†

C
a  “create”, 

respectively, susceptible, infected, recovered and 

chronically infected individuals when applied over 

the reference (vacuum) state 0, 0, 0, 0{0}  , so 

we can build our space from basis vectors of the 

form 
†

{ ( ) {} 0} .i
n

i i

i

n a   
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This vacuum state has the following properties: 

{0} 0
i

a   (whence “annihilation” operators) and 

{0} {0} 1   (inner product). 

 

Thus, we also have 

 
1

1

†
{ } ..., , ... ;

{ } ..., , ... ,
j i
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which imply that 
†

} } .{ {
j j i j i

a a n n n   

The operators 
†

j j j
n a a therefore count the 

number of individuals in a definite state, and are 

then called number operators. 

 

The vector state of our system may be then 

rewritten in terms of creation and annihilation 

operators as 
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We may also define a linear operator H  (called 

hamiltonian) which generates the time evolution of 

our system. This may be easily constructed from 

the transition rates present in our model according 

to Table 1 (cf. [4], Table 1). 

 

Table 1. Transition rates presented in our model and corresponding terms in the hamiltonian .H
 

Transition Description Contribution to H  

Sb
S S S  birth of susceptible individual (rate

S
b ) 

† † †
( )

S S S S S S
b a a a a a  

Sd
S   death of susceptible individual (rate

S
d  ) 

†
( )

S S S S
a a ad   

S I
   

infection (rate  ) † †
( )

S S I S
a a a a    

(1 )
I R

    
change infected  recovered (rate

(1 )  )   

† †
( )(1 )

I I R I
a a a a     

I C
   

change infected  chronically 

infected (rate )   

† †
( )

I I C I
a a a a    

Rb
R R S  birth of recovered individual (rate

R
b ) 

† † †
( )

R R R SR R
b a a a a a  

Rd
R   death of recovered individual (rate

R
d  ) 

†
( )

R R R R
a a ad   

Cb
C C I  

birth of chronically infected individual 

(rate
C

b ) 

† † †
( )

C C C C I C
b a a a a a  

Cd
C   

death of chronically infected individual 

(rate
C

d  ) 

†
( )

C C C C
a a ad   

 

Upon summing up the terms presented in Table 1, and rearranging them, we may write down our hamiltonian as 

 

† † † † † †

( ) ( ) ( )

[ (1 ) ].

S S S I R R R C C C

S S S S S I S R I C I R R S R R C C I C C

b d n n b d n b d n

b n a d a a a a a a a b n a d a b n a d a

 

   

       

         

H
            (5) 

 

The equation for the evolution of the probabilities (master equation [7]) may then be written as a linear equation 

in a (imaginary-time) Schrödinger-type form, namely 

 { } { } .
i it t

d

dt
  H                                                                                                  (6)  

Note that by substituting the expressions for the hamiltonian, (5), and the vector state, (2), into the master 

equation we get after some algebra 

 



 
 

Mondaini. 2015. Biomedical Sciences Today 2:e8 

4 

( , , , ) ( , , , )

( 1, , , ) ( 1, , , ) ( 1, 1, , )

( , 1, 1, )

[( ) ( ) ( ) ]

( 1) ( 1) ( 1)

( ( 1) (1 )

( ) ( )

( ) ( ) ( )

( )

S I R C S I R C

S I R C S I R C S I R C

S I R C

S S Rn n n n S I R C C C n n n n

S n n n n S n n n n S n n n n

I n n n I

R

S S

n

d
p b d n n b d n b d n p

dt

b n p d n p n p

n p n

t t

t t t

t



  







   

 

       

    

  




( , 1, , 1)

( 1, , , ) ( , , 1, )

( , 1, , ) ( , , , 1)

1)

1)

( 1) .

(

( )

( ) ( )

( ) ( )

S I R C

S I R C S I R C

S I R C S I R C

n n n n

R n n n n R n n n n

C n n n n C n n n

R R

C nC

p

n p n p

n p

d

n

b

b d p

t

t t

t t

 

 

 





 



             (7) 

 

The above equation represents the flux of 

probability between states at rates defined by our 

model. This kind of equation is also called forward 

Kolmogorov differential equation. 

In order to compute the time-dependent expectation 

values of the observables ( )tS , ( )tI , ( )tR and 

( )tC through the master equation, we need, firstly, 

to introduce the following moment generating 

function (mgf) [8,9] 
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Multiplying (7) by exp( )
S S I I R R C C

n n n n       

and summing on ( , , ,
S I R C

n n n n ), leads, after some 

algebra, to
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By differentiating the above equation with respect 

to , , ,
S I R C
     and evaluating at { 0}

i
   yields, 

respectively, the following differential equations 

for ( ) , ( ) , ( ) , ( )t t t tS I R C  :  
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Figure 1. Solution of the above set of differential   

equations obtained by using the software 

Mathematica [10]. 
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In Figures 1 (a) and (b), the solutions for 

( ) , ( ) , ( )t t tS I R and ( )tC are represented, 

respectively, by the black, red, blue and yellow 

lines for (0) , (0) ,1000 1 S I  

(0) (0) 0. R C  Note that, in order to obtain 

these solutions, we have also used the following 

values for the involved parameters:  

(a) 1.0
S R C S R C

b b b d d d          day
-1

 

and 0.8;    

(b) 1.0
S R C

b b b   day
-1

, 0.8
S R

d d   day
-1

, 

1.0
C

d     day
-1 and 0.8.    

Last but not least, we should stress that the results 

we obtained allow us to confirm that our model is 

able to reproduce key features of epidemic 

processes, including the exponential and 

asymptotic (plateau) phases. We are presently 

working on an extension of this work, specifically, 

trying to generate stochastic sample paths which 

may be compared to available experimental data. 
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