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Abstract 

Small molecule drugs are designed to bind to specific targets including proteins, enzymes, DNA, or RNA to 

inhibit/regulate their functions. Basically, these compounds all share some common drug-like properties such as 

Lipinski's rules of five. In this study, we propose to utilize entropic component analysis designed to tackle 

variable selection problems to explore further whether anti-cancer drugs designed for all types of cancers 

possess unique properties different from other types of drugs. We found out number of aromatic rings, partition 

coefficient (LogP) and number of hydrogen bond donor are those key factors. These results may provide a 

guideline to design better antic-cancer drugs. 

Keywords: Maximum entropy, variable selection, anticancer drugs.
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1. Introduction 

 

Small molecule drugs normally are chemical 

compounds designed to bind to specific proteins, 

enzymes, DNA, or RNA that are identified as 

potential targets to inhibit/regulate their functions 

for treating diseases. Basically, chemical 

compounds must satisfy drug-like properties in 

order to be considered as lead compounds and 

become drugs. Two criteria, Lipinski's rules of five 

[1] and Absorption, Distribution Metabolism, 

Excretion and Toxicity properties (ADMET), 

which involve hundreds of physical, chemical 

pharmaceutical factors, are commonly considered. 

An obvious question one can ask is are all of those 

factors really required attentions while we are 

designing drugs. Particularly, we are more 

interested in determining whether there are 

common properties that define drugs as anti-cancer 

drugs despite the knowledge on biological targets 

used for the design and if there are what are they. 

 

By answering these questions, we can expect to 

gain insights regarding the crucial chemical, 

physical and pharmaceutical properties of anti-

cancer drugs. Furthermore, these understandings 

may be utilized as additional guideline to design 

better drugs specifically targeting cancers. 

 

Since these questions are similar to variable 

selection problems, we propose to utilize entropic 

component analysis (ECA), which has been 

developed and demonstrated its applicability in 

various subjects involving multivariate problems in 

physics [2] and geology [3,4] to answer these 

questions in this study. We first briefly discuss the 

ECA method and compare to other conventional 

methods in next section. For our purpose, drugs 

data from DrugBank database [5, 6] will be the 

sources for this study. Based on the ECA, we find 

out there exists key factors that define drugs as 

anti-cancer drugs. These factors are number of 

aromatic rings, partition coefficient (LogP) and 

number of hydrogen bond donor. 

 

2. Methods and materials 

 

2.1 Entropic component analysis 

 

Theory and approach. As mentioned earlier, the 

questions raised in Introduction can be considered 

as a variable selection problem. One common 

approach to tackle variable selection problems is 

through converting it into a model selection 

problem, which has been well studied in the past 

including the hypothesis testing based on the p-

value method and statistical significance tests. Yet 

there exists some difficulties of practical use of  

these conventional methods for model selection. 

These difficulties include the uncertainty regarding 

the selection of the “right” significance level, 

which is usually set empirically and the hypothesis 

test for model selection is not designed for multi-

model and large samples. A detailed review has 

been addressed by Raftery [7,8]. 

 

To be, a strategy to solve variable selection 

problems commonly involves the answers of two 

questions: what is the form of the models that are 

optimally associated with variables; and what is the 

selection criterion. The first question is usually 

partially solved by a process of trial and error. For 

example, a logistic model has been found to be 

suitable for binary response problems [9,10]. 

Regarding the second question, two criteria have 

been proposed and widely used, Akaike 

information criterion 
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14], where we assume N variables,  i
j

i xX  , 

labeled by subscript j=1⋯N and superscript i=1⋯l 

labels the observations, being considered for 

problems of interests and l corresponding outcomes 

or dependent variables,  iyY ˆ . For binary-output 

problems, the positive outcome of the i
th

 

observation is denoted by 1iy  and the negative 

outcome is 0iy . Furthermore,  ̂,
1

i
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XL i
is the 

likelihood function and  N ˆ,...,ˆ,ˆˆ
21  are 

maximum likelihood estimates (MLE) [15]. There 

have been some other criteria are proposed to 

provide better solutions including C information 

criterion [16], a generalization of BIC and AIC, and 

the minimum entropy analysis (MiEA) [2-4].  

 

However, it requires prior information generated 

from some ad hoc prior modeling rules that suits 

people’s need to properly use either AIC or BIC 

(refer to [2] for more discussion). We proposed an 

entropic analysis strategy based on the MiEA and 

Covariance (CV) analysis, which we term entropic 

component analysis (ECA), to overcome these 

shortcomings. 

 

The ECA consists of two steps, (1) ranking the 

variables and (2) determining the preferred 

variables or key factors.  Regarding ranking the 

variables, we apply Bayes’s theorem to convert the 

variable selection problem into a probability model 

selection problem first. The probability model best 
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represents our state of knowledge for positive 

outcome of the system associated with the variables 
iX  and some prior knowledge denoted by 

 1iyP  is given by  ̂,1 ii XyP   = 

   ̂,1
1

i

y

i XLyP i
 . Given N variables, there are 

2
N
-2 different combinations (sets) Si of variables 

XX
iS  . Similarly, one can define submodels by 
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i XyP ̂,1 . Thus selecting the variables 
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iS  is identical to selecting the 

corresponding  
ii S
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i XyP ̂,1 . The submodels 

are ranked according to the relative entropy of the 

submodels and a reference model  ii Xy 1  

(refer to [2,4] for more discussions), 
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Because it is usually difficult to determine the 

underlying functions of the systems as the 

reference  ii Xy 1 , a uniform distribution, 

  mXy ii 1 , which indicates our complete 

ignorance of the system’s outcomes, is chosen. One 

can then rewrite Equation (1) as 
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by substituting  ̂,1 ii XyP   = 

   ̂,1
1

i

y

i XLyP i
  and a prior probability 

  lyP i 11   to denote our complete ignorance of 

weightings for each observation into  ,PS . The 

maximum relative entropy max   0, PS indicates 

the model  
ii S

i
S

i XyP ̂,1  is identical to the 

uniform distribution, and contains no information. 

Conversely, a model with the minimum relative 

entropy indicates the maximum amount of 

information relevant to the system has been 

codified into it. Within the family of submodels, 

the decreasing order of  mPS , presents an 

increasing preference of the submodels. 

Furthermore, the full model associated with all 

independent variables  ii XyP 1full   should 

contain the information mostly. Thus we define the 

explanatory power     %100,, full  mPSmPSPo  

to quantify the ability of submodels respect to full 

model to explain the outcome, where  mPS ,full can 

be treated as the unit power. 

 

Because the Bayesian interpretation of probability 

treats probability as a meaningful scale to represent 

the degree of knowledge one has to describe the 

system, the explanatory power defined based on 

this concept also presents a scale for ranking and is 

a descriptive statement about the extent of 

information codified in models [7,17]. When the 

explanatory power is zero, the corresponding 

model contains no information. The higher the 

explanatory power of the corresponding model, the 

more information it has to interpret the outcome. 

 

However, when the number of independent 

variables gets too large, ranking all possible 

submodels is unwieldy and slow. To determine the 

preferred variables or key factors and analyze the 

joint effects of different combinations of the 

variables efficiently, the following procedure is 

considered. It starts by evaluating the explanatory 

power ranking scheme of all single variables, and 

then one select the first key factor from the top of 

the ranking scheme. One can further pursue the 

second key factor, which gives maximum joint 

explanatory power along with the first. One can 

continue this process until a criterion based on CV 

analysis is reached. The CV of explanatory power 

of the variables, except for the first ranking 

variable, is defined as the ratio of standard 

deviation and mean of the explanatory power. 

When the CV of a step is less than or equal to a 

threshold value, for example 5% in this study, the 

explanatory power of these variables is 95% 

indistinguishable, and the process will be stopped. 

Thus, all of the first ranking variables determined 

prior to this step are considered to have explanatory 

power being distinguishable. They will be 

recognized as the key factors that mostly influence 

the outcomes. 

 

Statistical analysis procedure for large number 

of samples. Additionally, it always requires 

assessing goodness of regression to ensure 

obtaining “right” models. Many statistical methods 

thus have been devised. Following the Monte Carlo 

aspect, which relies on repeated random sampling 

to compute and obtain statistical results, we 

propose to integrate assessment of goodness of fit 

and the variable selection in one analysis 

procedure. 
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The procedure starts from analysing a set of small 

subsets data randomly sampled from the raw data 

using the first step of ECA, single variable analysis. 

The goodness of MLE fitting will roughly be 

examined using variance matrix of regression 

parameters first. The fitting will be considered as 

an acceptable fitting when the following two 

conditions are met. First condition, the variance 

matrix reciprocal condition given a subset for 

regression is larger than a threshold value, which is 

chosen as 0.0001 here (MATLAB algorithm 

“RCOND” was used [18]). Furthermore, the 

number of subsets that satisfies the variance matrix 

reciprocal condition is larger than half of total 

number of subsets. Second condition, when the 

explanatory power CV and normalized frequency 

or probability of selected variables become 

consistent given a sets of the subset sizes or the 

number of subsets larger than threshold values, the 

MLE fitting is acceptable. Finally, we will only 

analyze intersections of the subsets for submodels 

that pass these two criteria. Once the preferred size 

and number of the subsets is empirically 

determined, it will then be utilized directly for rest 

calculations. 

 

Some remarks on ECA, AIC and BIC. Some 

remarks on the proposed selection criterion and 

other two widely used ones are discussed here 

before we tackle our problem. There are several 

differences can be found from their analytical 

forms. The dominant contribution of the three 

criteria is the average likelihood functions. Both 

AIC and BIC average the likelihood function with 

the same weightings for each observation, while 

entropic criterion, Equation (2), assigns each 

observation a probability  
ii S

i
S

i XyP ̂,1  as 

weightings. There are also several minor 

differences among these criteria. For example, BIC 

additionally takes the logarithm of sample size l 

into account while AIC does not. It indicates that 

BIC leans toward lower-dimensional models more 

than the AIC does. When sample size is large and 

is assumed to come from a Koopman-Darmois 

family, Schwarz has shown AIC cannot be 

asymptotically optimal [12]. Both the entropic 

criterion and BIC takes the logarithm of sample 

size log l into account. Namely, entropic criterion 

also can overcome AIC’s issue in large sample 

cases. Yet BIC further includes the effect of the 

total number of variables. Finally, entropic criterion 

additionally includes effect from the reference 

distribution, log m. However, because m is chosen 

as a constant, it has no impact on ranking. 

 

One may expect AIC, BIC, and entropic criterion to 

reveal similar ranking schemes from the above 

observations. However, because entropic criterion 

takes the differences described by 

 
ii S

i
S

i XyP ̂,1  in each observation into account, 

while both AIC and BIC fail to do so, one can 

expect that the entropic criterion is more adaptive 

to data than the other two. Consequently, variables 

selected by the ECA depend more on the data 

qualities than those chosen by either AIC or BIC. 

When data qualities are ensured, one may expect 

that the better results from ECA and likely to 

accurately obtain key factors. 

 

2.2 Drug data 

 

Since the DrugBank database collects detailed drug 

properties including comprehensive chemical, 

physical and pharmaceutical and corresponding 

biological targets [5,6], the DrugBank data are 

considered for this study. Particularly, we only 

consider 4072 out of 7759 drugs that are designed 

to target proteins for various diseases including all 

types of cancer. The data acquired from DrugBank 

was pre-processed into a two-dimensional matrix 

array for the studies. One dimension records all 

types of drugs properties. Here we consider 9 

properties as listed in Table 1. The other one 

represents the dependent variable, which indicates 

whether this drug has anticancer function in this 

study. Note that there are 95 % of 4072 drugs are 

non-anticancer drugs denoted by 0iy and for 

anticancer drugs are labelled by 1iy . 

 

3.  Results and Discussions 

 

3.1 Descriptive statistics of all 4072 drugs 

 

Before applying ECA to identify key factors that 

define drugs as anti-cancer drugs, we study the 

descriptive statistics of all 4072 drugs data and 

clustered them in three ways. First, when all 4072 

data are considered, Fig. 1 shows the histograms of 

each individual factor. The mean values and 

standard deviation of nine factors are listed in 

Table 1. According to Table 1, there are 70% of 

drugs does not have hydrogen bond donor and the 

maximum number of hydrogen bond donor is 5. 

There are around 11~12% of drugs have 5 

hydrogen bond acceptor and the maximum number 

is around 25. Regarding partition coefficient, logP, 

it ranges from -2 to 2 equally likely. Regarding 

solubility, logS, there are 20% of drugs has value 2. 

For polar surface area (PSA), 2.25 % of drugs have 

value around 50. The percentages of drugs that 

have PSA differs from 50 are all less than 1.5%. 
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There are 11% of drugs has 4 rotatable bonds. For 

number of rings, drugs that have at least 2 rings are 

around 20% of total drugs studied. There are 35 % 

of drugs do not have aromatic rings. Finally, 

molecular weights of drugs range from 5 mg to 400 

mg. The molecular weight that the most drugs (1.3 

%) have is 47 mg. 

 

Figure 1. Histogram of 9 properties of 4072 drugs. 

The top left panel simply shows majority of 4072 

drugs are not anti-cancer drugs. 

 

All non anti-cancer drugs. Next, when all 3906 

non anti-cancer drugs are analyzed, the descriptive 

statistics are shown in Fig. 2. The mean values and 

standard deviation of nine factors are listed in the 

“non anti-cancer” column in Table 1. The 

histograms are almost identical to the one in Fig. 1. 

The means and standard deviations as shown in 

Table 1 are identical to the values from all drugs 

for all factors except the number of hydrogen bond 

donor and acceptor, logP and molecular weight. 

This result is merely a consequence of non anti-

cancer drugs are the dominant contributors. 

 

All anti-cancer drugs. Finally, the histograms of 

nine factors when we just consider all anti-cancer 

drugs are given in Fig. 3 and the means and 

standard deviations are listed in anti-cancer column 

in Table 1. The histograms and mean values of all 

properties are quite different from non anti-cancer 

drugs. 

 

Table 1. Descriptive statistics of 9 properties of 4072 

drugs. 

 

hbond: hydrogen bond; PSA: polar surface area 

 

 

Figure 2. Histogram of the properties of all non 

anti-cancer drugs. 

 

Summary. The descriptive statistics of nine 

properties as shown here shows that properties such 

as number of hydrogen bond donor, logP and 

molecular weight have distinct differences between 

non anti-cancer and anti-cancer drugs. Yet this 

descriptive statistics is still insufficient to answer 

the question that which chemical properties are key 

features for a drug to have anti-cancer functions. 
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Figure 3. Histogram of the properties of all anti-

cancer drugs. 

 

3.2 Entropic component analysis 

 

ECA convergence. The strategy of the ECA is to 

analyze the subset of raw data randomly selected 

rather than the whole data set. Therefore, we need 

to determine the minimum size of subset and 

numbers of trials randomly sampled from the raw 

data given the subset size required to obtain 

consistent analysis results. First, we fix the number 

of sampling to 1,000 and gradually increase the 

subset size from 10 % to 50 % of the size of raw 

data. Table 2 shows the results. In this table, the 

second column list the name of property that was 

selected to be primary factor to define a drug as an 

anti-cancer drug with the probability indicated in 

the third column. Given this property, ECA 

continually select second property as listed in the 

fourth column and the probabilities of these two 

properties being key factors are shown in the fifth 

column. The results indicate when the subset set 

size is larger than 20 % of the size of the raw data, 

the first three key factors selected by the ECA are 

identical. Furthermore, the normalized frequencies 

(denoted by Fre) of the selected key factors in 

1,000 trials are gradually increased when the subset 

size is increased. From these results, one can 

conclude that the minimum size of subset required 

is 20 % of the size of the raw data. Note that after 

including the fourth (number of hydrogen bond 

acceptor) and fifth (logS) factors into the model, 

the frequency remains the same as the frequency 

when only three factors are considered. 

 

Second, we fixed the subset size to 40 % of the size 

of raw data and gradually increase the number of 

trials sampled from the raw data from 500 to 1,500. 

The results are listed in Table 3. Table 3 shows the 

 

Table 2. ECA prediction with consideration of different 

subset size. 

 

same results for all cases except the normalized 

frequency is slightly smaller in the case with the 

number of trials being 1,500 than 1,000 as in Table 

2. Nevertheless, the results indicate the number of 

trials has little impact on the ECA. Again, after 

including the fourth (number of hydrogen bond 

acceptor) and fifth (logS) factors into the model, 

the frequency remains the same as the frequency 

when only three factors are considered. 

 

Table 3. ECA prediction with consideration of various 

number of sampling procedures. 

 

Therefore, based on these two studies, we simply 

chose 40% of the raw data size as the minimum 

subset size, namely, 1,600, and randomly sampled 

raw data 1,000 trials for further investigating the 

key factors for anti-cancer drugs. 

 

Number of aromatic rings, logP and number of 

hydrogen bond donor are key properties of anti-

cancer drugs. Now we focus on the results 

obtained from using subsets with size being 40% of 

the raw data size in Table 1. The results indicate 

there is 61% chance that the number of aromatic 

rings being the primary key factor to define a drug 

as an anti-cancer drug. Given this property, it 

further indicates that there is 82 % chance that both 

the number of aromatic rings and logP are key 

factors. However, since there is only about 20% 

increase in probability (from 61% to 82%), it 

suggests that the logP only plays minor role. After 

including the third property, number of hydrogen 

bond donor, the probability is slightly increased to 

87%. It suggests the effects of number of hydrogen 

bond donor are less than the logP. However, the 

probability remains 87% when either fourth, fifth 

or both properties are included. This result 

indicates that the effects of both factors are 
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indistinguishable. From these results, therefore, one 

can conclude that the number of aromatic rings, 

logP and the number of hydrogen bond donor are 

three properties preferred over other factors are key 

features to define drugs as anti-cancer drugs. 

Moreover, ECA also indicates the preference of 

these three properties, the number of aromatic rings 

is preferred of logP and logP is preferred over the 

number of hydrogen bond donor. 

 

4. Summary 

 

We have proposed utilizing entropic component 

analysis to analyze chemical, physical and 

pharmaceutical properties of existing drugs 

collected in DrugBank database. Particularly, we 

are interested in determining whether there are 

common properties that make anti-cancer drugs 

unique and what are they despite biological targets. 

Our studies reveal there exists such common 

properties, which are number of aromatic rings, 

LogP and number of hydrogen bond donor. This 

study suggests that these three properties may 

provide a guideline to design compounds to have 

better potency in inhibiting/regulating cancer 

targets. 
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