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Abstract 

What are biological systems and how do they work?  Does there exist a physical explanation that captures both their 

complexity and their simplicity?  Biological systems are, after all, just another type of physical system.  It has the distinction 

that it is “alive” whatever this means.  Otherwise, biological systems consume mass and energy like any other endothermic 

process requiring these to operate. This paper introduces a very fundamental theory of computation.  So fundamental in fact 

that it is both simple and easy to overlook.  It is based on the computational interpretation of two basic questions.  The first is 

“What does it means for a system to subjective distinguish its environment?”  This defines the “tokens” of computations.  

The second is “What does causality mean?”  The answers and the implications of these questions lead a computational 

definition for what a “process” is at a very basic level.  This applies to any process inclusive of biological ones.  The theory 

is demonstrated through a brief description of how to reverse-engineer the cortical neuron.  The simplicity and elegance of 

this model leads to the observation that the neuron provides perhaps the best possible biological exemplar of the 

computational theory.  The synergistic and hierarchical nature of biological processes in living systems is what principally 

differentiates living from non-living systems.  The extensive or additive nature of energy is posited as providing a possible 

coherent binding mechanism between and across such hierarchies.  This is exemplified through the positing of a conjoint 

computational-morphological Hamiltonian that is explicative in how conjoint adaptation can occur across synergistically 

across multiple biological “domains”. 
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1. What are Biology Systems? 

 

How do biological systems work?  Indeed, what are 

they?  One looks at the world and observes 

biological systems; animals, bacteria, viruses – all 

existing and interacting with their respective 

environments and each other.  Each biological 

system exhibits its own unique behavior and often 

so in unimaginable and intriguing ways.  One can 

speculate the existence of a physics-based 

explanation of biological systems.  This paper does 

not suggest such a comprehensive theory, but rather 

suggests a useful course in this undertaking.   

 

Physical, chemical, biological, and intelligent 

systems all consist of “processes.”  Some of these 

processes generate energy like the burning of fossil 

fuels and transitions from states of low-entropy or 

order to higher entropic states and greater disorder.  

Conversely, other processes in nature require 

energy to operate and maintain or even decrease 

their entropies to achieve higher states of 

organization.  Living systems are the hallmark of 

the latter as highlighted by the physicist 

Schrodinger in his famous book “What is Life?”[1].  

They are capable of organizing mass and 

information into higher states of organization in 

bold defiance of the 2
nd

 Law of Thermodynamics. 

  

The above all suggests the fundamental importance 

of asking the question “What is a “process?”  This 

must be then be followed by the question “What 

differentiates processes that increase entropy and 

those that reduce it?”  Biological systems are of 

course examples of the latter.  This paper looks at 

these two questions and suggests possible answers.  

Moreover, these answers are constructive and 

suggest the possibility of a quantitative framework 

for understanding what biological systems are and 

how they might work; at least in part. 

 

A summary of this paper is as follows.  Section II 

outlines a general theory of computation of 

processes.  Unfortunately, the term “computation” 

comes pre-loaded with the a priori experiences and 

notions of the reader.  Here, we strip the notion of 

computation down to two very fundamental 

axioms.  The first defines the “tokens” of 

computation based on how a system subjectively 

distinguishes its environment.  The second is that 

of causality which dictates the 2 kinds of 

computational dynamics possible.  In this view, 

every process is a computation inclusive of physics 

and biological systems.  This is even true of the 

synergistic interactions of subsystems within any 

given organism. 

 

Unlike nonliving systems, biological systems 

require multiple synergistic and interacting 

biological subsystems to exist.  These 

“subsystems” which for example include the 

endocrine, immunological, and neurological 

systems, require the existence of many lower-levels 

of processes down to the atomic scale.  Section III 

briefly describes an energy formulation for how 

multiple process dimensions might synergistically 

interact.  The end of the section that follows 

provides a simple example of conjoint 

computational-morphological adaption to form new 

dendritic and axonal connection by a cortical 

neuron.  These are done in concert to maximize its 

information throughput capacity given in units of 

bits/second. 

 

The cortical neuron provides the simplest possible 

example of optimal computation by a biological 

system.  Section IV develops a simple model of 

how cortical neurons compute and adapt through a 

summary of previously published findings.  It is 

described how to reverse-engineer the cortical 

neuron.  This includes its biological architecture 

(soma, dendrites, etc), its Hebbian adaptation rules, 

spatiotemporal codes, and provides an explanation 

of the role and need of somatic noise induced by 

Quantum Synaptic Failure; the failure of a pre-

synaptic potential to induce a post-synaptic 

response.  Section IV ends with a summary of how 

a cortical neuron can synergistically optimize its 

computation and morphological connections to 

other neurons.   

 

2. The Physical Nature of Computation 

 

Before proceeding, consider a perspective of 

autonomy useful to this discourse.  This view is not 

new to physics [2], ancient philosophies [3],[4], or 

even biology [5].  The idea is very simple.  To truly 

understand a system, one must view the system 

from inside the system and how it subjectively 

distinguishes its environment.  You must take the 

first-person view. 

 

Any process has inputs, outputs, and methodology 

for converting inputs into outputs.  Inputs can be 

information or mass.  Outputs can be information 

or structure such as new neural connections.  

Regarding the latter, the biological system uses 

available energy to organize its biological 

structures to higher levels of complexity and 

correspondingly lower entropic states.  Since both 

types of processes are required to obey the same 

basic computational rules and since information is 

easier to talk about, the focus of the present 

discussion is on information and not mass and 

structure.  It should however be remembered that 
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discussion points made apply equally to mass or 

information and more typically, both at the same 

time.    

 

Keeping the first-person view, how does a system 

distinguish its environment?  There are 2 ways.  

First, it can try to observe its environment.  

Secondly, it can distinguish the varying ways it can 

change or control it.  In science and engineering we 

are trained to assume the 3
rd

 person view.  After all, 

it is the scientific method.  However, the external 

view is counterproductive in understanding how 

processes and in particular, biological ones, work.  

Instead, we challenge the reader to try to assume 

the first-person perspective so familiar to those in 

computer gaming. 

 

We begin with two axioms.  The first provides the 

tokens of computation while the second provides 

for possible computational dynamics.  It is 

interesting that exactly two tokens and two possible 

dynamics will arise and that their interplay is 

sufficient to understand physical processes. 

 

These proposed axioms are as follows: 

 

1. To distinguish is the most elementary 

operation that can be performed by a 

system. 

 

2. Computational dynamics must abide by 

causality. 

 
The logical consequences of these two axioms are 

developed separately and then combined at the end 

of this section to make the following assertion.  All 

physical, intelligent, and biological systems 

execute one of two possible computations and 

indeed are just computing. 

 

The first axiom defines what it physically and 

mathematically means to distinguish.  This idea is 

initially developed through a thought experiment.  

It is then formalized through the introduction of the 

concept and mathematical construct of the logical 

question.  Formalizing what it means to ask a 

question is very important both philosophically and 

practically.  Felix Cohen provides an excellent 

justification [6] for the void in logic for the lack of 

such.  Consider the following thought experiment. 

You are asked to look at a black computer screen 

and then asked “Do you see anything?”  You study 

the screen for a few moments.  You then answer 

“No.”    

 

However, the displayed image contains the text 

“Do you see me?”  Its font contrast with the black 

background is so small, that it can barely be seen.  

Perhaps another person with better visual acuity 

might see the words displayed.  In this instance, the 

observer has been asked a question and he in turn 

looks the screen and asks the same question.  The 

answer will depend on both the visual acuity of the 

observer and the relative brightness of the text.  

The observer poses a question that is answered by 

what is subjectively seen.  Information transfer 

actively occurs from the “environment” to the 

“observer” while this question is posed.  If the 

observer looks away or simply gets up and leaves, 

then active information transfer is impossible. 

 

So the notion of distinguishability requires an 

interaction between an observer and its 

environment.  This is a dynamic characterization of 

the act of distinguishing.  But this is only half of 

the story in so far as distinguishability is 

concerned.  Systems don’t only act as “observers,” 

they also act as “controllers.”  That is, they can also 

make decisions regarding how they would like to 

control their environments.  Thus subjective 

decisions comprise its possible choices on how it 

wants to effect its environment.  The suite of 

possible choices collectively form the question of 

what to do.  However, unlike the information 

example where the question was posed, control 

requires that the system answer this question.  Thus 

one can describe both the information acquisition 

and the control or output capabilities of a system in 

terms of the notions of asking and answering of 

questions.  This provides a very simple and elegant 

way of thinking about what processes do, but not 

how they should do it. 

 

Richard Cox last published paper [7] develops two 

important ideas.  First, logic can capture the 

dynamic process of asking and answering 

questions.  Secondly, Boolean Algebra is as we 

know it, incomplete.  Including a joint and dual 

logic of questions captures a powerful 

complementarity that exists within Boolean 

Algebra.  This rich structure is capable of capturing 

the physical flow of information and control within 

a physical system.  Consider the following two 

examples to demonstrate basic concepts. 

 

A question is defined by the set of all possible 

subjective answers.  The observer viewing the 

computer screen asks S{a,a}  “Is there 

anything there or not?”  The question S in this case 

is a binary question.  Binary questions are the 

simplest possible question that admit the physical 

flow of information or control.  Its possible 

subjective answers are denoted a and a.  The 

answer a corresponds to “yes” while a is a “no.”  
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One or the other will be selected through the 

interaction of the environment with the system.  

  

The selection of an answer through its interaction 

with its environment corresponds to the system 

being induced into one of two possible physical 

states defined within it.  This same argument can be 

used to characterize what happens when a system 

makes a decision.  There, the inverse happens; the 

system purposefully enters one of multiple possible 

output states.  Each choice corresponds to one of a 

suite of actions to execute and in doing so, 

internally defined output states are specified. 

 

As a constructive example, posit the following 

logical architecture of a cortical neuron.  In the 

model to be developed, the neural input dendritic 

field poses the question X = X1X2 . . . Xn where 

n is the number of distinct dendritic inputs.  

Formally, each question asks Xi = “Have I detected 

(seen) a post-synaptic “action potential or not?” 

Each Xi is a binary question having the form Xi  

{xi, xi} with xi an action potential being observed 

and xi not the case.  This number is on the order 

of 10,000.  Each Xi corresponds to a binary 

question asked the i
th

 dendrite of the neuron.  Thus 

the tokens of cortical neural exchange are just 

action potentials.  These action potentials 

correspond to the physical assertions [7] that are 

the answers generated by the collective cortical 

field.  This is a very simple way of understanding 

the exchange of information between differing 

neurons. 

 

The total cortical inquiry is X and as per above is 

described as the conjunction of each of these more 

elementary binary questions Xi in a logical sense.  

This just means that the composite question posed 

by the neuron is “What is the state of all my 

dendritic inputs?”  The number of possible answers 

to X is unimaginable large and on the order of 

2
10000

.  The neuron simply wants to know what it 

“sees.” 

 

The collective information acquired through 

dendrites by posing X can then be causally used to 

guide how the neuron responds.  The neural 

response arises through its answering the question 

Y  “Should I generate an action potential or not?”   

 

As will be seen, the best answers Y offered by the 

neuron should make efficient use of the actionable 

information it acquired through X.  This is 

represented by the logical expression XY or the 

“disjunction” of the input information with its 

required decision Y.  Recall that the conjunction 

“” of two logical questions requests the 

information obtainable by asking both.  

Conversely, the disjunction of two questions 

requests the information obtainable which is 

common to, i.e., provided by both questions.   

 

As a trivial example, consider a card-guessing 

game. The interrogating player can ask the 

questions S“What is that is the suite of the card?” 

and C“What is the color of the card?”  The 

“common” information is just SC=C; the color of 

the card.  The information common to suite and 

color is just the color of the card.  For the model 

neuron, XY simply describes the conversion of 

acquired actionable information into purposeful 

actions.  This is a powerful and simple notion for 

quantifying the concept of actionable information.  

This is one reason why as it will be seen that 

computational efficiency translates to energy 

efficiency for the operation of the biological 

system.  The presentation here is decidedly topical 

with the provided references providing the reader 

with a much more detailed development. 

 

The first axiom has suggested that logic can be 

viewed as a language of computation and 

distinguishability.  We will see that the second 

axiom will tell us the two possible ways a system 

can compute.   

 

Recall that we see two possible kinds of processes 

in nature.  Either a process can generate energy 

(exothermic) or require energy to operate 

(endothermic).  This can be stated in an even more 

trite way; processes either work to provide energy 

or they require energy to work.  Biological systems 

of course fall into the latter category.  Both kinds of 

processes exist simultaneously in nature.  In fact 

the existence of the latter is at the behest of the first 

in providing the free energy required for its 

operation.   

 

The second axiom deals the nature of causality and 

its implications.  Just like in developing the term 

“distinguishabilty,” we likewise seek a working 

definition of causality.  This seems a difficult 

pursuit.  Fortunately, a constructive and working 

definition already exists.  It was provided by 

Claude Shannon in [8].  In this paper, Shannon 

develops the two fundamental problems of 

information theory; those of optimal source and 

channel coding.  Towards the end of this paper he 

discusses the duality of these two problems and 

then goes on to make a very cryptic statement.  

Shannon claimed he would write and clarify it in 

the future, but he never did.  This is what he said: 
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 “You can know the past, but not 

control it.  You can control the 

future, but have no knowledge of 

it.”  

  

Consider the following possible computational 

interpretation.  Natural processes can only operate 

in one of two possible ways.  A system can work to 

reconstruct the past.  Conversely, it can work to 

control future.  The first dissipates energy and 

entropy.  The second can decrease entropy but 

requires energy to operate.  The first kind of system 

includes dissipative physical systems, 

communication systems, and even archeological 

digs.  We will provide examples of these.  The 

latter includes intelligent and biological systems. 

 

Our focus is then on those kinds of systems that 

operate to control their future.  Regardless, 

causality induces the need for the same 4 distinct 

phases in either process type.  We will collectively 

recognize these phases as the familiar Carnot cycle 

of thermodynamics.  The implication is that all 

physical processes execute Carnot cycles and that 

this cycle is a cycle of computation with its original 

realization within thermodynamics.  Causality 

requires that processes that operate to control the 

future have the following sequential computational 

phases in their dynamics.  As will be seen, each of 

these phases is epitomized by the cortical dynamics 

to be described. 

 

Figure 1 below will be frequently referred to.  It 

details the internal 4 phases both types of 

processes, i.e., ones that reconstruct the past and 

others that control the future.  Both processes of 

course operate in the present.  This is “where” 

computation is done. 

 

 

Figure 1. Depiction of the two possible kinds of 

computation; those which are exothermic on the 

left and those which are endothermic on the right.  

Both types of processes are depicted in Figure 1.  

We are principally interested in those systems of 

the type found on the right side of Figure 1.  They 

must operate in the following way beginning with 

the phase labeled “Acquire Information” on top of 

the cycle.  During this phase, the system acquires 

information from its environment as guided by the 

active question X it poses.  This corresponds to a 

physical transfer of information into the system.  

For the neuron, this is the physical and successful 

transmission of a pre-synaptic potential across each 

synaptic cleft. 

 

The system then stores acquired information in 

memory as depicted in Figure 1.  Storage is 

necessary since information cannot be 

instantaneously converted into a decision since this 

requires a causal delay.  By extracting “actionable 

information” from the collective measurements, 

memory storage requirements can be significantly 

reduced.  The cortical neuron to be described stores 

its actionable information in its soma as a charge.  

This charge represents the knowledge the neuron 

has to make its decision to fire or not. 

 

Once stored, information is no longer susceptible to 

noise and essentially becomes “frozen.”  That is, 

information storage is analogous to a temperature 

decrease in a physical system giving rise to a 

“phase transition” within the system.  Here, 

temperature takes on a more general interpretation 

corresponding to the computational operating 

temperature of the process.  We shall see that 

temperature and operational noise-levels are 

computationally equivalent in general as 

demonstrated through the single-neuron 

computational model developed. 

 

Then, as shown in Figure 1, stored information is 

then “expended” in its use to generate a decision.  

The term “expended” means that the next decision 

cycle will require new information.  Consider the 

analogy of someone who likes to bet on horses in a 

race.  Suppose this person knows someone else at 

the track with side information on which horse will 

win any given race.  After gaining and memorizing 

the information of which horse will win the next 

race, the gambler goes to the window and places 

his bet.  After winning the race; or not since no 

processes have 100% Carnot efficiencies, the 

gambler will likely return to his friend to obtain 

new information for the next race. 

 

Finally, after the system converts its acquired 

information into decisions, it must reset its memory 

thereby allowing it to acquire new information.  

The term reset is preferred over the term erasure as 

used in other similar perspectives in the area of the 
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thermodynamics of computation.  This is for 

instance the view in [9] where the physical limits of 

computation considered by Landauer.  The view 

here is this “erasure phase” phase is really a “reset 

phase” required by the system to be able to acquire 

new information and begin the next cycle.  

However, this phase requires energy and sets the 

limits of achievable computational efficiency and 

this is in agreement with previous work [9]. 

 

No better example exists than the cortical neural 

model to be discussed.  Its “reset phase” consists of 

the restoration of internal and external ion sodium 

and potassium concentrations across its cell 

membrane which were depleted through a firing 

event.  This phase of its computational cycle is 

accomplished through the expenditure of energy 

via its Na
+
/K

+
-ATPase enzyme pumps.  The 

success of this phase enables the neuron to observe 

new dendritic information. 

 

Figure 1 provides a summary of what has been 

discussed so far.  It contains the Carnot cycles for 

both types computation.  One can go through an 

identical but reverse argument regarding the 

consequences of causality on exothermic processes.  

There, information is stored in the past and its 

reconstruction attempted at the present.  However, 

information is lost over time making it impossible 

to perfectly reconstruct ostensibly anything. 

 

Systems on the left side of Figure 1 generate 

energy and increase entropy.  Conversely, systems 

on the right require energy and reduce entropy.  

Engines convert fossil fuel stored in the past into 

useful energy at the present.  Past civilizations can 

be thought of as storing information in the past.  

Time and the 2
nd

 Law contributes to the loss of this 

information as characteristic of the first process 

type.  Archeologists try to reconstruct the past 

present despite information lost.   

 

Communication systems work similarly.  Consider 

use of fiber optics to transmit signals at light speeds 

under our oceans between continents in optical 

fibers.  Initially, pulses have high-powers and are 

very short in duration as they are inserted into the 

fiber.  The fiber channel causes signal attenuation 

(power loss) and pulse dispersion (temporal 

widening).  Repeaters are required to periodically 

detect weakened and smeared pulses, and then 

amplify, and re-transmit them.  They reconstruct 

information transmitted in the past at the present. 

 

But what are intelligent and biological systems 

“trying to do?    This is described in Section IV in 

the context of the cortical neuron model that is 

developed there.  As will be seen, the cortical 

neuron is perhaps the simplest imaginable exemplar 

of a biological device that optimizes its 

computational and energy efficiencies.  Before this 

though, there is a major distinction between living 

and nonliving systems that must be noted.  It is 

critical to the development of a theory how 

complex biological systems work.  The next section 

considers the requirement for a systems-level 

understanding of the following question.  “How do 

biological systems operate harmoniously and 

synergistically across their multiplicity of sub-

processes operating simultaneously at many 

hierarchical levels?”  Until this question is 

answered, the search for any comprehensive theory 

of biological systems will be in vain. 

 

3. The Functional Dimensions of Biological 

Systems 

 

A more holistic view albeit computational should 

be taken of biological systems.  They have multiple 

interacting processing dimensions vs. what might 

be called the boring singularity of the processing 

dimensions by nonliving systems. 

 

In the next section, optimal computation by a single 

cortical neuron is summarized.  This model serves 

to provide a succinct example of the optimization 

process carried out by biological systems.  This 

optimization can be viewed form an information-

theoretic perspective or from the standpoint of 

thermodynamics and energy efficiency.  The 

hallmark of biological systems is their energy 

efficiency.  This is certainly true of the brain [10], 

[11], and ostensibly all organs and processes 

including locomotion.  Section IV briefly describes 

how the same computational model developed can 

easily be extended to include optimal 

morphological adaption by the cortical neuron.  

This means optimizing the formation of new 

dendritic pathways and axonal connections or 

creating entirely new ones as in neurogenesis [12]. 

 

4. Cortical Neurons 

 

The simplicity and computational “purity” of the 

described cortical model are its compelling 

features.  More amazing, as we have talked about 

the importance of the notion of distinguishability, 

this is essentially all that the cortical neuron does.  

It simply tries to distinguish. 

 

The following is a synopsis of the findings 

described [13] - [19].  These have never been 

completely summarized in any one place.  We 

begin with detailing each of the 4 phases of its 

“Carnot cycle” of the cortical neuron.  This is 

followed by a description of the computational 
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objective of the neuron.  That is, how should it 

adapt to better do what it is that it does. 

 

A cortical neuron has on the order of 10,000 

distinct input dendrites.  They define the receptive 

field of the neuron through which neuron sees its 

“world.”  Think of this as 10,000 computer screens 

with each dendrite asking “Is anything there?”   

 

In this way, each synapse can be seen to correspond 

to a binary question Xi, i=1,2,…,n asked in concert 

in space.  They are also asked in time but adding 

this dimension as simple as it is secondary only to 

note that neurons also adapt temporally in their 

advance or delay or dendritic signals to the soma.  

These temporal aspects represent but a minor and 

simple extension to the present discussion and 

which is also captured in the references [13] – [19].   

 

Each dendrite is seen as logically corresponding to 

a binary question of the form Xi “Is there a 

detected post-synaptic assertion (answer) at this 

dendrite, or not?”  The realization of a post-

synaptic potential corresponds to the physical 

answer to this question.  In total, the model cortical 

neuron asks the conjoint question X=X1X2…Xn 

thereby asking the same question of all n dendrites.  

Collectively, the model neuron just asks X; what do 

I see right now?  It is hard to consider a simpler 

question to ask. 

 

Some pre-synaptic potentials will successfully 

conduct across their respective synaptic clefts to 

the subject neuron to induce a post-synaptic 

potential.  Others will not.  In information theory, 

this is kind of communication channel is known as 

a “binary erasure channel.”  Wikipedia provides a 

handy reference [20].   

 

On the order of maybe 70% of presynaptic 

potentials will induce post-synaptic potentials.  

This fraction is interestingly enough roughly the 

Carnot efficiency of the neural system.  Those that 

do transmit will induce a traveling potential along 

its respective dendritic pathway to the soma.  This 

transmission requires time and the realization of a 

propagation delay and as has been suggested, it 

learned delay time.  

 

The consideration of the temporal aspects of neural 

adaptation would leads to a single and simple 

conclusion.  Every cortical neuron attempts to 

adapt so as to ensure the simultaneity of the arrival 

of the dendritic signal having the greatest relevance 

to the decision that the neuron must make.   

Assume that these both observed and relevant 

dendritic signals arrive within a defined time 

window at the soma.  The net effect will be the 

transmission of a proportional electrical charge to 

the soma from each dendrite as weighted by the so-

called efficacy or gain of that dendrite.   

 

Observe that the total integrated induced charge in 

the soma will have variations owing to the random 

transmission failure of pre-synaptic potentials.  

This effect represents an effective “noise” induced 

on each measurement Xi by the neuron and is 

important for the multiple reasons to be described.  

This noise source is formally known as Quantum 

Synaptic Failure or QSF.  

 

Each “detected” post-synaptic potential races along 

its respective dendritic pathways to the soma of the 

neuron.  Each “answer” arrives at the soma 

inducing an input current and its integration within 

the soma.  Eventually, with prevailing dendritic 

gains and delays, the net effect is to exploit the 

capacitive response of the soma to perform a 

spatiotemporal integration of the totality of what it 

“sees” via its dendritic field of “eyes.”  This 

represents the totality of actionable information 

available to the neuron to make its decision 

whether to fire or not. 

 

The integrated somatic current leads to a 

proportional internal potential according to the 

integration of the differential equation given by 

Ii=Csdv/dt.  The integrated potential; call it vm, 

will contain the actionable information of the 

neural system inclusive of the random perturbations 

induced by QSF. 

 

The induced potential is can be seen to be the inner 

product of the Boolean post-synaptic measurement 

n-vector x and their respective synaptic efficacies 

denoted here by the n-vector .  Therefore,  =x
T
.  

This is supposedly the entirely of the “evidence”  

=x
T
 available to the neuron for it to make its 

decision.  How can this be? 

 

Now perhaps one of the most intriguing aspects of 

this model cortical neuron is how it operates in its 

real-time decision making.  The neuron in the 

present model wants to answer Y = {y,y}, i.e., fire 

or not.  It can only observe and use x in making this 

decision.  Applying Bayes’ Theorem in logarithmic 

form we obtain 

 

 
  

( | ) ( | ) ( )
log log log

( | ) ( | ) ( )

p y p y p y

p y p y p y

x x

x x
 

 

(1) 

 

This implies that one can practically implement 

Bayes’ Theorem using addition.  Furthermore, it 
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follows that the probability of a firing decision is 

given by 

  

 
 

 

1
( 1| )

1 exp
p y x  

 

(2) 

 

where =log p(y|x)/p(y|x).  Eq. (2) is of course the 

familiar sigmoidal response curve of cortical 

neurons in response to the level of input stimulus.  

Here, =1/T serves as an “inverse temperature” 

parameter dictating the degree of randomness with 

which decision are made.  Smaller temperatures 

guarantee less randomness and conversely so for 

higher T.   

 

Let  correspond to the firing threshold of the 

neuron.  As shown in [ 13], the total potential = 

  as a computation exactly corresponds to Bayes’ 

Theorem computed using its additive form.  The 

log-prior odds is given by =log p(y)/p(~y) or the 

logarithm of the probability it should fire or not 

while  corresponds to the log-likelihood log 

p(x|y)/p(x|~y)  This means [13] that the 

probabilistic rule that the neuron must use in 

making its firing decision is guided by the logistic 

function as given by Eq. (2).  The main conclusion 

is that the neuron uses Bayes’ Theorem to make its 

decisions and that this can be accomplished within 

a simple biological neuron.  This in itself is 

amazing. 

 

The total potential in Eq.  is perturbed by random 

temporal noise as induced through QSF.  The 

consequence is simple and interesting.  Random 

somatic noise as induced through QSF enables the 

neuron to probabilistically make decisions 

according to Eq. (2).  This is accomplished by the 

fact that the probability of firing as derivable from 

the independence of  and additive noise  and is 

given by p(y=1|+) = ½erfc[/(2
1/2n)].  

Random QSF noise can be shown to be Gaussian 

being the sum of a large number of random terms.  

The consequence of this is that one can exploit the 

fact that one can relate the inverse temperature to 

noise level through the relation (2)
1/2 

ln 2/n.  

The significance of this is that QSF provides the 

ability for a biological neuron to realize and 

optimize required logistic response in Eq. (2) in its 

probabilistic decision making to control its future. 

 

The implication is that the cortical neuron uses 

Bayes Theorem to make its decisions.  This is an 

amazing finding if true.  This suggests that the 

operation of biological processes may all in some 

fashion use Bayes’ Theorem to optimize their 

respective processes and that it is or problem to 

explain in detail how each instance does so. 

 

Let us now continue with the next cycle in neural 

information processing.  In Figure 1, we have 

completed the phase of the model making a 

decision. If not, then neural Na
+
 and Ka

+
 ion 

concentrations are maintained across cell 

boundaries, e.g., a status quo.  Conversely, the 

generation of an action potential and transmission 

of an axon potential has consequences.  It means 

that the neuron must use energy resources to re-

establish the pre-firing ion concentrations 

necessary to the acquisition and storage of new 

information in the future.  The 4
th

 and final phase is 

endothermic requiring the expenditure of metabolic 

energy for its completion readying the neuron to 

begin a new cycle.  Sugar firing ATP cycles and 

sodium-ion pumps are required in this processing 

phase.  This is the energy intensive phase of neural 

processing and is the cost of resetting itself for its 

next cycle of operation. 

 

To summarize thus far, the cortical neuron operates 

cyclically.  Moreover, their operation can be 

described as a generalized computation functional 

form of the “Carnot” cycle.  For such systems, the 

x-axis coordinate frame in Figure 1 is system 

entropy change H and temperature change T.  

The second y-axis is system temperature, or as we 

have seen, measurement noise level.   

 

The areas of the Carnot cycles as shown in Figure 1 

are important as follows.  The areas of the 

respective Carnot Cycles shown in each diagram 

correspond to the free energies either generated by 

the system (left) or required by the  operation of a 

system (right) to operate.  This means E = HT in 

either case.  Furthermore, and in terms of 

endothermic systems, this means that the smaller 

we can make both H which is the information the 

system needs to operate and the differential 

“temperature” T  over which the device must 

operate, then the greater the operational efficiency 

of the system.   

 

Space limits the consolidation of [13] – [19], 

however a succinct description of the optimal 

operation and adaptation of a single cortical neuron 

can be captured as follows.  To do so we again 

return to our test subject looking at computer 

screen asking “Is anything is there?”  Consider a 

single neuron in the same way.  It looks upon its 

pre-dendritic field and asks “Is anything there?”  It 

does so with its own idea and local definition of 

what that any “thing” is.  It makes a decision yes or 
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no.  The question of how it learns to do so is 

therefore of critical importance. 

 

What is the single doing and how does it adapt?  

What is it optimizing?  Single-neuron optimization 

can be viewed from 2 complementary perspectives.  

The first is computational while the second is from 

the standpoint of energy efficiency and 

thermodynamics. 

 

Computationally, the neuron is solving an 

important mini-max problem.  It tries to maximize 

the rate it makes decisions while simultaneously 

minimizing the information it needs to do so.  This 

problem exactly corresponds to the two most basic 

problems in information theory; the problems of 

source and channel coding [8].   Shannon 

considered these problems to be complementary.  

However, Gaspar [21] discovered that these 

problems can be solved jointly using what he calls 

Double Matching.  Doing so leads to the complete 

optimization of the communication system. 

 

Neurons also perform double matching [14], but do 

so in a way inverse to how it is thought about in 

information theory.  They attempt to maximize 

their decision rate Y while balancing this with the 

amount of actionable information they need to 

acquire XY to make these decisions.   

 

To maximize its information throughput, it must do 

so in a way that maximizes its output entropy H(Y).  

In this case, the neuron only has two possible 

decisions Y, and so the objective becomes of 

maximizing H(Y) to 1 bit/decision.  This can only 

occur if Pr(Firing)=Pr(Not Firing) = ½ .  This has 

a very basic interpretation; the neuron is simply 

trying to distinguish.  Consider the following figure 

that graphically depicts how a neuron learns and 

behaves. 

 

Figure 2. Through learning, the neuron constructs 

a hyper plane that separates dendritic codes into 

two equally probably categories that either induce 

firings to do not. 

 

Single-neuron adaptation can be graphically 

understood as follows.  Define the hyper plane 

given by T
 x–  where again   are  are the 

synaptic efficacies and decision threshold, resp., 

formed through adaptation.  This hyper plane is 

oriented and located such that it bisects the space of 

2
n
 possible dendritic codes.  Furthermore, it 

separates the cloud of dendritic codes it has 

observed in the past and does so in two ways.  

First, the hyper plane results from a principal 

component analysis such that the dispersion of 

points orthogonal to the hyper plane is maximized.  

Secondly, the two regions have approximately 

equal probabilities guaranteeing that the output 

entropy is maximized.  An energy interpretation of 

the optimization is much simpler.  

  

The endothermic process on the right side of Figure 

1 corresponds to the complete computational cycle 

of the model cortical neuron.  The product TH is 

the area of the cycle and the energy E required for 

it to complete a processing cycle.  It is of course 

desirable that this energy be as small as possible.  

This means we can either reduce its decision rate to 

reduce energy requirements (undesirable), or it can 

reduce its operating temperature range T, or do 

both.  The latter is accomplished by the cortical 

neuron by maximizing its number of inputs n 

subject to physiological constraints while 

regulating the somatic measurement noise level 

through quantum synaptic failure as described 

previously. 

 

Ideally, the neuron will make probabilistic 

decisions to fire or not according to Eq. (2)  

recalling that β=1/T.  The larger the temperature T, 

decisions become more random with measured 

information becoming disregarded.  As T 

decreases, decisions become deterministic 

functions of measured data.  As shown in [15], 

QSF provides a means for a cortical neuron to 

regulate its operation temperature.  To see this all 

one needs to do is recognize the functional 

equivalences given by 1/[1+exp( )]  ½ erfc[ 

/(2
1/2n)] if   (2)

1/2 
ln 2/n .  The central limit 

guarantees that the somatic noise is Gaussian with 

the QSF failure rate regulating the effective noise 

n or computational temperature Tn. 

 

Moreover, the neuron can minimize it operating 

temperature range directly by simply maximizing is 

number of dendritic inputs, e.g., morphologically.  

As shown in [15], cortical “Carnot” performance 

gains asymptote around n=10,000 suggesting a 

possible explanation for the observed numbers of 

cortical connections in biological neurons.  

 

We conclude with a brief description of the idea of 

conjoint optimal computational-morphological 
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adaptation.  The single cortical neuron possesses a 

computational Hamiltonian or energy function and 

it is given by E(x,y) = T
xy – µy.  It is a function of 

the neural “microstates.”   

 

In thermodynamics, energy is said to be an 

extensive property of a physical system.  This 

means is that if bring two physically independent 

systems together then extensive properties “add.”  

Energy is extensive.  Therefore, we can consider 

combining the computational and morphological 

systems together.  One can posit a morphological 

Hamiltonian given by E(u,v,y) where u is a pre-

synaptic axonal connection field  of possible new 

inputs and v the post-axonal dendritic field.  This 

means that the conjoint computational-

morphological Hamiltonian is given by EC-

M(x,y,u,v) = E(x,y)+ E(u,v,y).   

 

Hebbian feedback y, while guiding synaptic 

efficacies and decision threshold development, also 

can guide development of new pre- and post-neural 

connections having computational relevance.  Of 

course, increasing the number of dendritic inputs n 

also means that the morphological system is 

synergistically aiding the computational domain by 

improving its efficiency by increasing its number 

of connections.  At the same time it can be 

observed that the computational system guides the 

morphological one so it makes judicious use of its 

resources.  It seems worthwhile to pursue this 

direction further and how multiple interacting 

biological functions might be computationally 

understood. 
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